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THE LINEARIZED SUBSONIC FLOW ABOUT SYMMETRICAL
NONLIFTING WING-BODY COMBINATIONS

By John B. McDevitt .
SUMMARY

Methods are presented for determining the llnearlzed subsonic flow
about symmetrical, nonlifting wing-body combinations. The wing is repre-
sented by a sulteble plenar distribution of elementary sources in accord-
ance with the ususl assumptions of linearized, thin-sirfoil theory. The
required boundary conditlon for tangential flow at the body surface is
met by distributing along the body axis suiteble dlstributions of three-
dimensional sources and mmltlipoles. As part of the present analysis, a
theory is presented for determining the flow about cilrcular or nonclrcular
bodies by the use of axially distributed sources and multipoles. The flow
over thin, nonlifting airfolls having symmetrical profiles is also studled
in considerable detail, and it is shown that the concept of the oblique
source Pllament can be used in obtalning numerical results for wings having
tapered as well as untapered plan forms.

A comparison of theory and experiment is made for two L45° sweptback
wings in combination with basic Sears-Hzack bodies of revolution and in
combination wilth the basic bodies indented according to Whitcomb's tran-
sonic area rule, The effect of Indenting the body on the pressure dls-
tribution near the wing-body jumcture 1s of particular Interest for swept-
wing and body combinations. The effect of the area-rule indentation was
to adjust the pressure f£ield near the body so that the wing surface lsobars
tended to follow the local sweep lines of the wing.

INTRODUCTION

Iinearized theories for predicting the subsonic pressure distribubions
on thin wings or slender bodies have been developed in considerable detall
but comparatively little attentlion has been directed toward the problem
of predicting the subsonic pressure distributions on wings and bodies in
combination. The existing theories for determining the subsonic flow gboub
wing-body combinations are based on the assumption of exbtremely slender
wings and bodies in accordence wlth the basic concepts of slender-body
theory as initiated by Max Munk and R. T. Jones (refs. 1 and 2) and
extended by numerous authors (see, in particular, refs. 3 to 6).
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In the present paper the fundamental solutions of linearized, three-

dimensional-flow theory are used in the development of a practical method
for calculating the subsonic flow about nonlifting wing-body combinations.
(The use of linearized theory requlres, of course, that the wing be thin
and the body slender but does not requlre the assumption of exbtreme slen-
derness involved in slender-body theory.) In the present method partic~
ular empheasis is placed on the practical application of the theory. No
attempt 1s made to estimete the accuracy of calculated results using this
method but a comparlson of theory and experiment is provilded.

In the analysis which follows, general relationships are first derived

for determining the strengths of the wing planar sources and the singular-
ities at the body center line so as to satlsfy the required boumdary con-
dition for tangentlal flow at the wlng-body surface. Next, the body alomne
and the wing alone are consldered, and flnally, the wing and body in
combination are considered.

AnsBn

PRIMARY SYMBOLS

wing aspect ratlo
strengths of axial multipoles according to linearized theory
wing span

pressure coefficlent, local pressure minus free-stream statlc
pressure divided by free-stream dynamic pressure

local wing chord -—

reference chord near wing-body junction (chord through the
point of intersection of body and wing leading edge)

chord at wing center Iine T

chord at wing tip
source strength
body fineness ratio (body lengbh divided by maximum body

dilameter)

multipole strength parameter (see eq. (34))
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CR~Cr
b/f2

body length (distance from nose to theoretical point of
closure)

plan-form convergence factor,

lateral distance to extended wing vertex for B = 1 (see
sketch (1))

free-stream Mach number

see sketches (e), (£f), and (m)
see sketch (c)

polar coordinate in yz plane
body radius

body radius at wing leading edge

radius of equivalent circular body having equsl cross-
sectional area

incremental distortion of body shape from the circulsxr shape
having equal cross-sectional area

cross-sectional aree of body

E wing thickness to chord ratio
Uy free-stream veloclty
u,v,w }
total velocitles
MORMORMES
U, V,W perturbation velocitlies normalized by division by the
(x),v(y),v(z) free-stream velocity
V(r) radial component of perturbation velocity in yz plane
v(t),v(n) tangential and normal perturbation velocities for an oblique

source filament (see sketeh (f£))
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ezimuthal component of perturbation veloelty in yz plane

radial.perturbation velocity at body surface induced by wing
sources

Y(r), T ["(r)w]

X - X

av

Cartesian coordinates

wing profile ordinate

alrfoil slope in streesmwise direction

‘modified airfoil slope (see eq. (59))

Carteslan coordinates normalized by division by a reference
chord B} . .

Cartesian coordinate measured from the leading edge of the s
reference chord cj (see sketch (o))

variable of integration (see sketches (g) and (1))

E-Bn tan Ag

JIE-]

N sin2A+p2cos@A = N 1-MPcos2A

ratio of specific heats (for air y = 1.L)
polar angle in yz plane

c
wing plan~-form taper ratio, L
perturbation potentieal
angle of sweep, positive when swept back

effective angle of sweep according to the GYthert
compressibllity rule
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(M) variable of integration
() first derivative with respect to the free-stream direction
()™ second derivative with respect to the free-stream direction

fns&nsbn multipole influence functions (see egs. (28) to (30))

Subscripts
av average
b body
e equivalent configuration of the GSthert compressibllity rule
J condition along wing-body Junction
IE wing leading edge
TE wing trailing edge
n order of multipole
W wing
X,¥,%,8 partial derivatives when not enclosed by parentheses

GENERAL THEORY
Statement of the Problem

In this paper methods are presanted Vo I\

for determining the subsonic flow sboub Iy
nonlifbing wing-body combinations. Iy
These methods are based on the usual I |
assumptions of linearized flow theory. I |
The flow over the wing is to be deter-
mined by representing the nonlifting Fid
wing by a suitable distribution of | j
plener sources. The wing is assumed i l |
to extend through the body as indicsated
in sketch (a). Ll

it |

Sketch (a)
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It is further assumed that the wing-body combinations possess both
lateral end vertical symmetry. The required boundary condition for tan-
gential flow at the body surface ls to be satisfled by placing along the
body axis (which 1s coincident with the wind direction) sultable axial
distributions of sources and multipoles. -

Boundary Conditions for Tengentisl Flow
at the Wing or Body Surface ’

If F(x,y,z) = O is the general equation determining a body or wing
shape in Cartesian coordinates, the boundary conditlon for tangential
flow at the surface is

Uai+v-a£+w-a§-=o (1)

ox oy oz

In cylindrical coordinates the boundary condition can be written as

oF ar , V(o) 3 _
v(x)ax +V )3 + R 3 0 (2)

where F(x,R,0) = O determines the body shape.

Wing theory.- If the ordinates for a thin airfoil are represented
by the function 2Z = Z(x,y), then

F(x,y,2) = 2-2(x,y) =0

and the boundery condition at the surface is

o7 dZ '
UL L v&¥2 - w=0
>+ - (3)

For linearized, thin-airfoil theory, the second term can be neglected,
U = U (l+u) 1s replaced by U,

z ~>» 0 (4)

=
IS
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Body theory.- If the radii of a body, z
sketch (b), are represented by the function U
R = R(x,0), the boundary condition at the
body surface is

R, (o) ,
V(x)&‘ + '—(R—z' '5—9- - V(I‘) =0 (5)

When the partial derivatives dR/dx end x I y

(oR/®)/R are emall, V(x) is approximated

by Uy and the boundary condition in terms Sketch (b)
of perturbation velocitilies at the body surface
is

&, Y(6) R _
xR 3 ()70 (6)

Compressibility Corrections

The rules of correspondence between linearized compressible and
incompressible flow in two dimenslons were glven originally by Prandtl.
The extension of these rules to include fiows in three dlmensions was
made by GSthert (ref. 7). The use of the (Othert rule is as follows:
First, the lateral and vertical dimensions of the configuration are
reduced by the factor f so as to obtain an “equivalent"” configuration.
The equivalent sweepback A, of the wing reference 1line (or oblique
source fllament) is obtained from

tan A
3 (7)

ta.nAe=

Thus, the quantities sin A and cos A are replaced by

j
sin A, = sin A _ sin A
NBin2A+B2cos2A Ba
> (8)
cos Ag = B cos A ___Bcos_/\_
NsinA+pZcos®A BA
J
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Next, the incompressible flow about the equivalent configuration is
determined. TFinally, the compressible flow is obtained from the calcu-
lated incompressible flow by lncreasing the velocity potential by the
factor l/BE, the axial-perturbation velocity is increased by the factor
1/p2, end the lateral and vertical velocities are increased by the factor
1/8 - (the pressure coefficient is increased by the factor 1/p2).

Pressure Coefflcient

The exact expression for the pressure coefficlent (isentropic flow)
is

7T
¢y = ;;E <l+z-2'-'-]; Mm2 {l-[ (l+u)2+v2+w2]}> -1 (9)

In order to obtain an sgpproximation consistent with linearized theory this
equation mey be expanded to give (see, e.g., ref. 8)

Cp = -2u- (V242 ) +B2 R P U(VE+R) + . . . (10)

For the linearized flow past plansr systems,- the first term is sufficient.
For slender bodies 1t 1s necessary to consider additional terms and the
appropriate expression is (in cylindrical coordinates)

G = -2u- [ v (1)

Nonlifting Thin-Airfoll Theory

The basic linearized partial differentisel equation for subsonic flow
is the well-known Prendtl-Glauert equation

(1M ) Py #Py 0, = O (12)

where M, is the free-stream Mach number and o(x,y,z} 1s the perturbation

potentisal.

L 1
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Perturbation potential and velocities.- The perturbation potential
subject to the boundary condition of equation (4) can be written in the
. form (see ref., 9 for the fundamentals of source-sink theory)

o(x,¥,2) = —= PE(X,PT)d% &F (13)
4np 0, “!:'T Jx-X)2482 (y-7)2+2°)

where the region of integration X extends over the entire plan form of
the wing. This solutlon represents the potential due to a planar (z = 0)
distribution of sources heving strength E per unit area.

The streamwlse, lateral, and vertical perturbation veloclities induced
by the planar distribution of sources are:

u(x,y_) - §2 - 1 B(X'E)E(-f)ﬁ?)di ay (l’-l-)
O0X  Lxp?U, 2 =z 2 2%
© % {(x-if) B [(y-7) +2" ]

. v(x,y) = 2o L ﬂ“ 8% (y-T)E(Z,pT) 4T oF (15)

) - aja
Vo Uy {(x-f)zwz[ (y-7)2+2° ]}

d __1 B?2E (%,pT)4X dF (26)

B_. - bsBUq a/2
2 Pley {(X-§)2+Ba[(y-?)2+22]

W(X:Y) =

Determination of the source strength distribution.- An spproximetion
for the source strength E can be obtained by finding e boumdary value
for w(x,y) as z —> 0 and using that result in conjunctlon with the
boundary condition of equation (U4).

The boundary velue for w as z - 0+ 1is to be obtained from
* ‘m 1 p27E(X,BY)dX 4T

= 1i
)-l-JtﬁU 3/2
Z>0+ o' {( x-E)2 48[ (y-5) 2422 ]}

Vo=o+ =
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(x:BYxﬁz)
B/ y-5) +2*
{x,By,Bz)
Bz
By | By | By
Sketeh (c)
where
N, = J (x-%)2482[ (y-F)°+25] =

N, = BJ(y-F)%+2% = Siiz%z
Finally there is obtained,
v _ B(x,By) i
z=0+ LBl
_ E(x,By)

2BU,,
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The above integrand is zero
everyvwhere for 2z = 0 except
at the point x =X, y=5%
vhere a singularity of the
kind 0/0O occurs; conse-
quently E(X,¥) may be
replaced by E(x,y) and
removed from vnder the inte-
-gral signs., In order to
evaluate thls equation it is
convenlent to make the fol-
lowing changes of vardiables
(see sketch (c)):

-1 B'\j(y'-y-)z"'zz
Nl

7\1 = sin

-1 B2

Ny

7\2 = gin

BJ(y-7)%+2°

sin A,

1T
63\2 f sin 7\16-7\1
[o]
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This result is subject to the boundary condition (L4) and hence the source
strength is defined as

E(x,8Y) _ o 4Zq (x,BY) (17)
U ax

where dZu/dx is the airfoll slope measured streamwlse along the upper
surface of the wing.

Source filaments.- In many cases, where the wing plan-form edges are
stralght-line elements, the use of source filaments in the msthematical
representation of the flow is advantageous. In this way the determination
of the perturbation potentisl is reduced from a two-dimensional integra-
tlon over the entire plan form to a single Integration performed in the
streamwise direction. Details concerning the use of source filaments
will be presented later in this report.

The General Solution in Cylindrical Coordinates for a
Line of Axlally Distrlibuted Singularities

The linearized potential equation in cylindrical coordinates is

2 1 1 _
(LM )PPy + 5 Pt 55 Pgg = O (18)

The linearized spatial flow aboubt bodies or wing-body combinations requires
g conslderation of sultable distributions of sources and multipoles along
the body axis with the axdis of the multipoles alligned with the wind axis.
The general solution of equation (18) consists of an infinite set of basic
singularities referred to as multipoles (ref. 9, p. 527).

Perturbation potential and welocities.~ The perburbation veloclty
potential of a line of axially distribubed multipoles of order n in
compressible flow is

1 Z)d%
o(x,r,0) = L-l- }; (Br)ncos nel]n An( )=

+
G o [(x-R)P+(pr)2+(2/2)

v B, (%)ax

o [(x-E)2(pr)2+(2/2)

(Br)nsin no (19)

where Ay(x) and B,(x) represent multipole strengths.
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The perturbatlon veloclity components can be obtained from equea-
tion (19) by partial differentiation in the axial, radial, and azimuthal
dlrections. If it is assumed that A,(0)=A,(1)=0 and Bn(O) Bn(1) =0,
the veloclty components are:

nfz (x-%)[A;(X)cos n6+B,(X)sin nel =

o [(x-mP+(pr)212H(3/2)

u(x,r,0) =

(20)

1
! n-1 [A,(X)cos no+By(¥)sin ne]
v(r)(x,r,e) - -ﬁzn(ﬁr) f [(x-i)2+(ﬁr)2]n+(l/2) &+

n (o}

%2 (2n41) (Br)™+ fl [An(F)cos no+By(X)sin nol = (21)
= 5 [ (x-%)2+(pr)2 ]n+(3/2)

: t X)sin n@-By({X)cos n
R ol (22)

o [(x-®)2+(pr)2Tr+(2/2)

If the change of variable

= X-x
8 = o (23)

is made, the above equations can be written in the following forms

=X

B
o(x,r,0) = 4:1:13 Z(Br)n f [Ap(x+Br8)cos no +

Bn (x+8r8)sin nolf, (5)dd (2k)
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1-x

u(x,r,8) = 1;:;3-2 (2:1);1“ f Ar (Apcos no4Bpsin ne)g (B)a6  (25)
Br
1-%
V(y )(x r,0) = lmﬁz(ﬁ ])‘nﬂf BT (A cos no+Bysin ne)l (2n+l)ny (8)-nf,(5) 146
Br (26)
1-x

B
V(e)(x,r,e hﬁBZ(B )n+:|.f T (Apsin n6-Bpcos n8)f, (8)dd

(27)
where
- 1
£,(8) = (§2+l)n+(1/2) (28)
- B
g, (8) = ('52+1)n+(3 s (29)
= 1
hn_(s) = (52+l)n+(3/2) (30)

The variations of the influence functions £, (5), g,(8), and h, (8)
with 3 are shown in figure 1 for values of n equal to O, 1, and 2.

An alternative expression for the axial perturbation velocity
involving the influence function £,(8) is obtained from equation (25)
by integrating once by parts

1-x
fﬁr (An'cos nO+Bn'sin n@)£y(5)dd
(31)

-1

u(x,r,8) = e ) o )n+1

Br
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where
- dAy, (x+BxT)
Ap' = Pr T ax
. dB, (x+BrF)
B! = B =

In the preceding results, the solution for an axiel distribution of
sources results when n 1s set equal to zero. For n = 1 the "dipole™
solution sppears; for n = 2, the "quadripole" solution; ete., For small
values of PBr the attenuation of the induced perturbetion veloclties
with increasing radisl distence Br varies approximately as 1/(Br)™*.

Limiting values for v and v as PBr -> 0.- The direct use of
(r) (6)

the preceding equations in boundary-value problems is difficult since the
unknown multipole strength functions must be related to the boundary con-
dition (6). An approximation for the strength functlons in terms of

boundary values can be obtained by first investigating the limiting wvalues
for V(r) and. V(e) as Pr—> 0. The followlng change of variable is made

(see sketch (d)),

-1 Br
- = ‘_Br =
V(x-X)2+ B2r2 sink (B,r) A sin —
(x-X)"+p°r
Br Ag Br -» 0 it is permlissible

to replace A,(X) and B, (%) by
A, (x) and By(x). Consequently
there are obteined the follow-

f"‘f;ﬂ Atdd ’ ing limiting values for v(r)
o X x 1t and v(e) as PBr - O:
d%* BrdX
X" sineX
Sketch (4)
.
(r) [An(x)cos n6+By(x)ein no] (32)

2 uap(pr)™
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2 (6) Z st B(B )Il+l [An(x)Sin n9—Bn(x)cos Il9] (33)

n=o

where

(34)
(&) . . . (=)

(2)(3) - . . (en-1)

Equations (32) and (33) will be used with appropriate boundsry
conditions in subsequent sectlions of this report in order to determine
multipole strength distributions for slender bodies or wing-body
combinations.

The Munk-Jones Slender-Body Theory

It might be well to point out here the essential differences between
linearized theory as used 1n this paper and the "slender-body™ theory
initiated by Munk and R. T. Jones (refs. 1 and 2}. In the Munk-Jones
theory, which has been applied and extended by numerous authors (see, in
particular, refs. 3 to 6), the first term of the Prandtl-Glauert equa-
tion (12) is neglected in comparison with the second and third. The rate
of change of the streamwise perturbation velocity is considered to be
small in comparison with the rate of change of the vertical and lateral
rerturbation velocities. The applicatlon of slender-body theory involves
solutions which satisfy Leplace's equation in planes normal to the free-
stream direction, and the streamwise coordinate enters only as a parameter
introduced by the body or wing-body cross-sectional area. For an axial
distribution of singularities the slender-body counterpart of equation (19)
is:

t o 1
hup(x,r) = 28! (x)zn Br _ Sp' (x)1n[x(1-x)] h/‘ Sp' (X) -5y (x) &% +

b ==

i- [a.n(x)cos no b, (x)sin n9:|

rn

n=1L
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where Sp' i1s the flrst derivative of the body cross-sectional area and
the paremeters ap(x) and bp(x) represent the multipole strengths.

The above relatlionship is a valid approximstion only in the near
vicinity of the body. It should be noted that the slender-body potential
for a multipole of order n = 1l or greater depends only on the parameters
an(x) or by(x) and does not involve & line integration as in linearized
theory. The Mach number effect enters only through the first term.

THE NONLIFTING WING IN SUBSONIC FLOW

The nonlifting wing in subsonic flow may be represented by & sultable
planar distribution of three-dimensional sources according to equa-
tion (13). If the wing leading and tralling edges are stralght-line )
elements, and if the wing profile is geometrically similar at all spanwise
stations, the evaluetion of the flow over the wing can be best performed
by a consideration of elementary source filaments. In this way, the
double integration indicated by equation (13) is reduced to a single
integration.

Untapered Wings

The flow about thin untapered wings has bheen studied in considersble
deteil (see, e.g., refs. 10 to 13). The following discussion presents
certain additional conslderations useful for numerical techniques.

The elementary source fillament in incompressible flow.- Conslder the
source filament of constant strength E/Up per unlt length (incompressible
flow) shown in sketch (e). The perturbation velocity &v (all velocity

z

8V(n)

N

SV(t) —-——

i 3v

Source filament

(0,0) (y,0) —'[ dy y,y
Sketch (e)
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components are normalized by division by the free-stream veloeity) induced

by the incremental source filement of length dF at the point (y,N) is
given by

EGAF E a\
v = = (35)
LU R® Lol N

The tangential perturbation velocity induced by the entire source
filament is given by

L,
v(_b)(y,N) = -fasin A Bv

—ul

E
= LT (cos K, -cos p.l) (36)

and the radial perturbation veloclity is glven by

W
v(n)(y,N) =f 2c:os A &v

= - (sin ptein p ) (37

Consider next the oblique source filement shown in sketch (f). The
N2=z2+(ysinA-x cosA)®

zj Vin)

\\"(f)

x“? M 1 L
%
q,x* e
+ N z
A' w

(X,Y.2)

€0,0,0)

ysinA-xcoshA

b/2

Sketeh (f)
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normal and tangential velocity components induced at the point (x,y,z)
are

E
b N

V(n)(x:Y:Z) = (sin My +81n Hg) (38)

V(t)(x,y,Z) = (cos p-cos p_) (39)

by N

The velocity components in the =x,y,z directions are

v(x) = v(t)sin.A—v(n)cos w cos A (0)
v(y) = v(t)cos A+v(n)cos w sin A (hl)
Y(z) T V@) @ )

The sweptback wing.- The relationships given by equations (38) to (42)
can be used to determine the compressible flow over thin, nonlifting, unta-
pered wings if the GOthert rule is applied and if the source strength is
defined as

éi = 2|cos AelBZ'di' (43)

where Z' 1is the x-wise slope of the airfoil surface. Since only
untapered wlngs are being considered here, the variable x is to be
replaced by x-X and an integration performed from X =0 %0 X = c.

The factor cos Ag appears in equation (43) since it is more convenient
to perform the integration in the streamwise direction rather than in the
direction normal to the obllique source fllament. The absolute value signs
are used in order that the source strength shall be properly defined for
left-hand wing panels as well as for right-hand wing panels.
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Consider the sweptback wing skown in sketch (g) where a coordinate
system made dimenslonless wlth respect to the root chord is used. The

Uo
(0,0) | » By
4de
Left-hand 3 .
source filament €,0) so-.llarlcgeh;-i?gr%cel ot
-_ 3
(1,0} §=¢+B7tande
Blb/2) .{
v &€
Sketch (g)

axial, lateral, and vertical perturbation velocities for a compressible
flow are to be obtalned by evaluation of the following:

Right-hand wing Left-hand wing
onpPu(t,n,t) = | cos Ae[flﬁz'f(x)da[cos AeIfBZ'f(x)dE (k)
o o
1 1
2npv(,n,t) = |cos Ae|[ Bz'f(y)dE+[cos Ae[[ ﬁz'f(y)dE (45)
1 ~ 1 _
2xpw(E,n,¢) = |cos Ae|[ Bz'f(z)dg+[cos AeI[ BZ’f(z)dg (46)

The first integrals on the right-hand side of equations (44) to (46)
represent the source filaments on the rlght-hand wing panel and the second
integrals those of the left-hand wing panel. The quantities f(x)’ f(y),
f(z), for the right-hand wing are:

' COS |, =COS |L° in |J,1+sin [
f(x) = ( - ) sin Ae-<B T ) cos w cos Ag (&7)
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<cos H,=COB R ° <sin ul+sin By (18
£ = cos + cog w sin
(v) N ) fe N ) fe )

gin in

Although these quantlties can be expressed in algebralc terms with
the help of sketch (£) and then substituted into the expressions for the
velocity components (egs. (44) to (46)), it is more convenlent for numer-
ical technlques to retain the identity of certain elementary quantities
because of the extensive repetition involved in obtaining the final
velocity components wu, v, and w. For the right-hand panel of a sweptback
wing, the following are required:

N = J(B¢)*R,2 )
w = tan™t BL
Ra
(50)
b, = tan™" R-Ni - >
B(v/2) R,
lJ-2 _ 'ban—l cos A;
>
where
R, = Bn cos Ae+(E-E)sin Ag (51)
R, = Bn sin Ag-(§-E)cos Ag (52)

(It should be noted that in the plane of the wing N reduces to N = |Ry]
and cos w = Rp/|Ry | = sien Ry.)
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The relationships gliven

by equations (50) to (52) were _cosa,
derived for a right-hangd, —sinA,

sweptback wing panel. These
results apply to other wing
panels 1f the proper sign is
affixed to cos A, and

sin A, according to sketch

(h). The distance B(b/2)

is negative for left-hand —cosA,
wing panels. sind,

The infinite oblique
wing.- Formulas for the per-
turbation velocities induced
by the infinite oblique wing
can be obtained by use of the
previous relationships 1f the
infinite oblique wing is consldered
10 be composed of two semi-infinite
wing penels as shown in sketch (1).

For the left-hand wing psnel,
By =7/2, Ry =-Bn cos Ag-(&-E)sin A,
and R, = -Bn sin A_+(E-E)cos Ag. For
the right-hend wing panel, p, = /2,
R, = Pn cos A +(&-E)sin A, and
R, = By sin A-(t-E)cos Ag. The use
of these definitions together with
the definitions for N, p_, and w

glven in equation (50) legd to the
following equations for perturbation
velocities:

Bzu(g:'fbg)

. 21
U
cosd,
v
T &
A,
cosd,
sin A.
Left-hand Right-hand
wing panals wing panels
Y
3
Sketch (h)
U
V
(0,0) =87
(1,0}
Right-hand
Left-hand wing panel
wing panel
Y
'3
Sketch (1)

Bv(E,n,¢) = B ten Aeu(ﬁ,n,ﬁ)

coszj\_efl [Bn sin Ae—(g-E)cos Ae]BZ'dE
T % (BL)*+[pq sin Ag-(&-E)cos A 17

BZ'dAE

cos Aeﬁg =
pw(E,n,8) = p f

o (B§)2+[!3n sin Ae-(g-E)cos Ae]2
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Since the origin for 1 d1is immaterial for the Infinite wing it is more
convenient to write these equations for 17 =0,

1 — 1 T
B2u(e, €) = - cos Ae (E-&)pz' dE (53)
™ “c[ (E-£)+(Bt/cos A.)°
Bv(t,t) = B tan A u(E,t) (54)
Bt * pz'dE
pu(s, 1) = [ (55)

T CcoB A.e

L (e-E)24(Bt/cos AL)®

where sin A, and cos A, are defined by equation (8).

When the perturbation velocities are evaluated in the plane of the
wing (¢ = 0), it is permlssible to set ¢ = O in equation (53) but not in
equation (55). However, equation (55) reduces to w = Z' vhen evaluated
in the plane of the wing. _ . :

If equation (53) is evaluated in the plane of the wing,

u(t,0) = - == Afz'dg (56)

My % E-t

it is seen that the pressure coefficient for thin-airfoil theory (CP = -2u)
changes with Mach number according to the factor

Pa Jsin2A+B2cos®A JL1-MBcos2A

(57)

For the unswept wing this factor reduces to the Prandtl-Glauert factor
l/B. The dependence of the compresslibility effect on the Mach number
component normal to the sweep line was pointed out by R. T. Jones,
reference 14,

The leading-edge singulerity for round-nose airfoils.- For round-nose
airfoils the slope 2' is infinite at the nose and changes rapldly in
value in the immedlste vicinity of the nose. TFor numerical work it has
been Ffound convenilent to replace the airfoll slope Z' by
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z', = 2 (38)

J1+(Z1)2

and the source strength (eq. (43)) by
[-‘IE— = 2[cos A| BT dx (59)

This modification is 1llustrated in
sketch (Jj) for sn NACA 64A008 profile. The z
effect of this modification is to reduce some- I
what the absolube values of the calculated
perturbation veloclities in the immediate vicin-
1ty fore and aft of the nose. In reference 15
it 1s suggested that the following correction
(due to Riegel) be used,

Ur(x,0)

N1+(Z1)2 o

U(x,z) =

Sketch (J)

where U d1s the total veloclty over the alrfoil, the subscript I refers
to the linearized value. This is equivalent to

5 . 1-414(21)3
ez 1z )P
wbich has the Ilimiting value u = -1 at the nose. However, it is not

possible to apply the Riegel rule at locations slightly forward of the
alrfoll nose,

u

The use of the modified airfoll slope Z'm permits one to calculate

reasonable end consistent perturbation velocities everywhere except at the
wing leading and trailing edges where first-order theory glves infinite
values except when the wing profile is cusped. For numerical work the
calculated streamwise and lateral perturbation velocitlies in the plane of
the wing have been terminated with values -cos®A and cos A sin A, respec-
tively, at the wing leading and trailing edges. The pressure coefficient
mey be estimated by substitution of the values u = -cos@A and

v = cos A sin A into equation (9).
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The inherent singularity at ¢ =0 as N ~ 0.- If a numerical
technique is used, the inherent singularity for { =0 at N —> 0 can
be circumvented in the following manner., For the infinite oblique wing
the singulaerity at { =0 as E ~> & is avolded by writing equation (53)
in the form

e 8 -(BZ!
B2u(8,0) = - 202 fg pz*dE f (BZ')5+8_(BZ )5 as+f B2 o

0 -t % 5 £4+5 E-t

(60)

where © i1s any convenlent
subinterval bracketing the
singular point, see sketch (k).
The integrand of the second
integral of equation (60) has
the following finite value at
the singular point

— _lim (82'),5-(BZ), 5
§>o0 g

= 2pZ"(§)

where 2"(&) is the second
derdivative of the alrfoll ordi-
nate evaluated at the singular

Sketch (k) point.

Y
0ol

For swept wings an inherent singularity in the plane of the wing
occurs when § has the value

Y = £-Bn tan Ag (61)

The singular integrals of equations (44) and (45) for ¢ = O can be avoided
by writing these integrasls in the form



]

NACA TN 3964 25

—%
1 £ -5 -
[cos AeL[ lef(x)dg = |cos Ae[f BZ'f(x)dE+[cos Ael[ BZ!f(x)dﬁ +
5 =
£+

[cos Ag] [ ) [BZ'f(x)]E*—g+ [Bz'f(x)]g*é )

(62)

*
1 E -5 1

|cos Ae[f BZ'f(y)dg = |cos Aelf BZ’f(y)d_§+[cos Aelf BZ‘f(y)dg +
o o E*+8

cos AeL[s [BZ'f(y)]_* _+[BZ‘f(y):| a5

% —
3

(63)

where 8 is any convenient svbinterval bracketing the singular point

E = E* (where 3 = 0). The integrands of the third integrals on the
right-hand sides of equations (62) and (63) have the limiting values

2 sin ABZ' L -2} - upzn
B(b/2) _ _ B B
cos Ag cos Ag cos Ag

2 cos AgBZ! L - 1 + 4 tan A BZ"

B(b/2) _ _ By B1
cos Ag cos Ae cos Ae

respectively, at the singular point. (This technique for avoiding the
singularity in the plane of the wing was illustrated prevliously for the
infinite oblique wing in sketch (k).)
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The distortion velocity at the center line of a sweptback wing.- At
the center line of the sweptback wing a unigque result is obtained whereby
the streamwise veloclty is found to be equal to that for the infinite
oblique wing plus a distortion velocity of the Ackeret type (proportional
to 2'), see reference 11, 12, or 13. This result is easily obtained in
the following manner. First consider the right-hand, sweptback wing panel.
The streamwlse perturbation velocity at the center line can be obtained by
use of the relationships of equations (4h) to (52) with ¢ =0, w = n/2,
N = |Ry|. There is obtained

1
2np®u(£,0,0) = lim -coser f BZ'd'E_ )
Bn->o o Bn sin A -(g-E)cos A

1

coe &g | oz’ daf
© [pn sin A.-(t-F)cos A IJ(E-E)%+(pn)?

(64)

In the first integral 1n can be set equal to zero and the result 1s equal
to one half that for the infinite obllique wing. The results for the left-
hand, sweptback wing panel can be expressed in a form identicel with
equation (64). Thus, the distortion velocity at the wing center line,

(B'ﬂ = 0),

U3 = Yeenter ~ Yoblique .
line wing

is given by

cos t BnBZ'dE
PPuy() = 1m {27 e ot

Pn=>o © [py sin A_-(¢-E)cos A, L (=) +(Bn)"

It is clear that the sbove integrand 1s zero everywhere for fBn =0
except at the singular point where the integrand is O/O. In order to
obtain the limit, an integration is performed from E-fn tan Ae-8 to

£-Bn ten A -e eand from E-Pn tan Ag+e to E~Bn tan A+d with BZT(E)
replaced by " BZ'(&)+BZ"(£)E. The Cauchy principal value is obtained by
letting € —= O and the final result is independent of B,
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cos AgZ'(E) n l+sin A

B l-sin Ag (65)

ud(g) = -

It should be pointed out here that, in the original body contouring method
of Kiichemenn (ref. 13), the distortion velocity at the wing-body Jumecture
is assumed to be that given by equation (65).

For sweptback wings of finite aspect ratlio the perturbation velocity
at the center line for { =0 is

Icos Ae| sin A
U= Usplique ¥ Ya +
wing R 2, B(b/2) g ]2
cos Ae 1
B(p/2)
cos Ae cos Ae BZ'dE

2
{cosAe-Rl

vhere R; = (&-E)sin A, 8nd Rp = (t-

8 Ag. (The above integral is not
singuler at the singular point ¥

-£)co
EX)

In the immediate viecinity of the tip of a sweptback wing the
streamwise perturbation veloclty may be approximated by the following:

Wings Having Tapered Plan Forms

The thin, nonlifting wing with tapered plen form has been considered
in references 16 and 17 where an evaluation of equations (14) to (16) was
performed by integration in the streamwise direction first, and numerical
results could be obtained only by laborious expansions into infinite
series. However, as will be shown by the following analysis, it is pos-
sible to compute the flow about the tapered wing by use of the source
filement concept in a manner similar to that for the untapered wing.
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Fundemental relationships.=- Consider the tepered wing panel in
sketch (1) (the equlvalent plen form according to the affine transforma-
tion of the G¥thert rule is shown), where the wing profile is geometri-
cally similar at all spanwise statlons; that is, Z' 1s constant for =
given angle o. The integration over the wing plan form indicated by

Blcoto ¢

Bb/sz)

8L >

\ k3
Sketch (1)

equations (14) to (16) is obteined by first integrating with respect to
%, keeping the angle o constant. The results of this line integration
may be thought of as representing the influence function for a line, or

filament, of source-like singularities.

The sources lying within the tapered, shaded area of sketch (1) are
replaced by an equivalent source line, or filament, having strength

opzi( BL_ _ E)dcr

sin o
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per unlt length of ¥, -2

see sketch (m). The Ta
perturbation velocity vimy
components induced by st -

this source filament
in directions normal
and tangential to the
filament are

Source filament
(o] s 5 Bbs2) s,
cosdy

\|

ol

Sketch (m)

i
gL
Bz' sin o By 66
== (sin p_+sin p_) + (cos u,-cos u_)|dg (66)
Ha
v(t) = -f sin ABV
4 8L
1 -
= B2Zn: L Sii C;\I (cos b, ~cos ;_Ll)-(sin p +sin ul) +
log ri',a.n <£+é> tan <£+i>:| do (67)
i L2 L2

and the streamwise, lateral, and vertical velocity components induced by
the filament are given by equations (40) to (42). The quantities N, R,,
Ry, w, s and B, are the same quantitles defined previously by equa-
tlons (50) to (52). The parameter E, see sketch (1), is related to the
angle ¢ by the following relationship
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€
o = ot‘l< ot o__~- —-—) 68
c c & (68)

For numerical work it is convenlent to use the parameter 'g' as the
variable of integration; hence, do 1n equations (66) and (67) is to be
replaced by

_ cos A -
6o 5 198 Pel aE (69)
ag B L/cos Ag

The sweptback wing,- The perturbation velocities induced by the
right-hand wing penel shown in sketch (1) are obtained by evalustion
of the following:

1

2xp®u = [ |eos Ae|az{g(x)+h(xﬂdg (70)
1 -

2npv =[ | cos AeIBZ'[:g(y)Hl(y)-dg (71)

2xpw =f1 [cos Ae|BZ‘[g(z)+h(Z)]dE (12)

(o]

where

- gin p_+sin p
g =<l- R )l:(cos e 2P ul) sin Ag ~ 2 l) cos W cos Ae:|
(X) BL /COS Ae N N

(73)

R - sin p_+sin p
&(y) =< - = )[(cos - Nl) cos Ag +< 2 1) cos w sin Ae:l
BL/cos Ag N N

(7h)

&(z) =< - BL-/]:(J;B Ae) (5111 HZ;Sin ul) sin w : (75)
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hyoy = 1 {%in zn[<?+Sin By ) <}+Sin P%)] -
(x) = m Ae OB i, cos

(sin p_+sin p,)sin Ag-(cos py-cos p,)cos w cos Ae} (76)

B(y) =~ {°05 A zn[(*;“ii“;‘l) Comuuzﬂ

(sin po+sin p,)cos Ag+(cos p,-cos p,)eos w sin Ae} (N

h(z) = - [(cos po-COS W, )sin w} (78)

BL /cos Ay

When the parameter ,BL/cos Ag Dbecomes infinitely large the h
functions vanlsh and the g functions reduce to the relationships given
previously for the untapered wing (eqs. (47) to (49)). If the plan-form
convergence factor, defined as

K, Cp-C
?A - BT (79)

B(b/2)

is small, say less than 0.5, the h functions may be neglected in
equations (70) to (72).

Eveluation of the streamwlse and lateral perturbation velocities in
the plane of the wing.- If s numerical technique is used, the singularity
in the plane of the wing at E* (that is, at N = 0) can be avoided by a
procedure similar o that used for the untapered wing, wlth the exception
that the log term appearing in h(x) and h(y) must be evaluated sepa-

rately. For ¢ = 0O it is convenient to write equations (70) and (71) in
the form .
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=%

E£"-d 1
2xpZu = lcos,Ae|BZt g(x)+h(x) aE + |cos,Ae|BZ' g/ \+h Ak +
N e
Jrﬁcos Mgl [BZ'g(x)J -+[BZ'5(X)} dE +
© ERit )
E5%s
f | cos Aelﬁz'h(x)dE (80)
t*s
£*-8 ot _
2npv =U/\ |cos Ae[BZ'[g(y)+h(y)Jd§-t/n |cos AeIBZ'[g(y)+h(y)]<i§ +
© T4
S
flcos A [BZ‘g(y)] +[BZ‘g<y)] dE +
° et t*-5
o
JF jcos Ae[BZ'th)dE (81)
E%-5

where 8 1s any small, convenlent subinterval (say & = 0.05) bracketing
the singular point.

The first three integrals of equations (80) and (81L) are not singular.
The third integrals of equations (80) and (81) have the following limiting
values, as & -> 0 for a right-hand wing panel,
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- —_
p E1n Aecos AGBZT [ BL BHA,) 1 1 )
BL/cos Ae cos Ae cos B(b/2) i B 81
cos Ag COB Ap COS Ag
L -
a(gcoserBZ‘
" BL /fcos Ag L /cos Ae>
cos Ag 3
and
, COSTABZ' [ BT, BTIAQ) - - —= +
BL /cos Ag \cOS A  COB B(b/2) B By
cos Ag COB Ag  COB Ag

coszA B
L/cos A)

(The indicated partial derivatives

) tan A (B L/cos Ag)

cos Ae

respectively, at the singular point.
may be evaluated graphically.)

The integrands of the fourth :Lntegrals of equations (80) and (81)
are logarith.m10&JJ.y singuler at & = g and do not change sign at the
singular point t¥, These integrals can be evaluated approximately if

B(v/2)  Bn
5 < Bn/cos fe s 208 fe o08 fe as follows:
sin Ag sin fg
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E*%+8
f cos AeBZ‘h(X)dE

T*-5
r N
Bn [B(b/2) _ By ]
43 sin A cos A BZ' cos Ay Lcos Ay cos Ag
= in .
BL fcos A ( _f%)s cos Aqg F
L J
et
f cos AeBZ'h(y)dE
E*-8
5 B [B(b/2) _ B ]
48 cos®A Bz . cos Ag Leos Ag  COS Ag
= n
B L/cos he (l -§£—>8 cos Ag

At the wing center line the latersl veloclty is zero because of
symnetry. For numerical work, the streamwise perturbation velocity can-
not be obtained from equation (80) by setting Bn = O since the function
g(x) contains an indeterminant form for pBrn = 0, However, equation (80)

can be used at the wing center line if the quantity 2nB%uy 1s added to
the right-hand side, At the wing center line the third integral of equa-
tion (80) has the following limiting value as & —> O:

sin AeBZ‘ "
4 cos Ae[p(b/e)/cos Ag - Pz }

At the wing center line the fourth integral of equation (80) contributes
the approximate value,
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B(p/2)

43 sin A cos ABZ' . 2 cos Ag
n ——

BL/cos Ag 5 cos Ag

The sbove results for the right-hand, sweptback wing panel can be
used for other wing panels if the signs of cos Ay and sin A, are changed
in accordsnce with the sign convention of sketch (k). The angle o, which
is the complement of the Gothert equivalent sweep angle Ag, 1s considered
to be a positive angle (in the second guadrant) when measured counterclock-
wise as in sketch (1). For the left-hand sweptback wing panel, the angle
o 1s measured clockwise and hence is & negative angle (in the fourth
gquadrant). The distances B(b/2) and BL are considered to be negative
for left-hand wing panels. :

THE SUBSONIC FLOW ABOUT NONLIFTING BODIES

The linearized spatial flow sbout bodies can be represented by
sultable axial distributions of sources and multipoles according to the
general solution (19) where the body axis and the axes of the multipoles
are aligned with the wind axis. It is assumed that the body cross-
sectional ares distributlion terminates with zero first derdvative,

S'(0) = 8' (1) = 0. It is further assumed that the function describing
the body shape, R(x,e), is single-valued in 6 &and possesses smooth and
continuous partial derivatives.

When equations (32) to (3L4) are used in conjunction with the boundary
condition (6) there results the following general requlrement to be sat-
isfied in the evaluation of the strength distribution functions A, and

Bp:

— 4+ ) ——=—— [A,(x)sin n8-B(x)cos n9) — -
ox n=o b (BR)"F - P BRA6

n

Z _ [Ap(x)cos no+Bp(x)sin n8] =0  (82)

L u(eR )n+1
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Axially Symmetric Bodies

For clrcular bodies, the source solution (n = 0) is the only solution
involved and the boundary condition (82) reduces to

Aj(x) = 2xBR %513- = p8', (x) (83)
X

where S'b(x) 1s the first derivative of the body cross-sectional. area.
The perturbation-veloclty components are
P(xE)8ny(3)
b

w(x,r) = = ax (84)
b v(/: [(x—§)2+i32r2]3,2

Br
v(r)(x,r) = -)-E f

o [(x-%)24p%r%]

s (®) _
3/2 dx

(85)

and the pressure coefficlent is to he calculated from

o _ovL 2
CP = ~-2u v(r)

When the strength distributlion of an axdsl source line cannot be
expressed analytically, the integration of equations (84) and (85) must
be performed by a sulteble numerical means. Although the integrand is
not singular at X = O for either equation, the integrand of equation (84)
changes sign and varies greatly in magnitude near X = x for smsll Br.
Consequently, the numerical evaluation of equation (84) is simplified
conslderably if the reglion of integratlon is separated into subintervals
(see sketch (n)) end this equation written in the form

x<l/2
(0,0) {x,0} (2x,0) {1,0)
x>1l/2
|
(0,0) (2x-1,0) (x,0) (1,0)

Sketch (n)
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\
u(x,r) = X j [(s‘ )2 52 - 3/2 [srb(x-al)-s!b(xml)] as, +
1 fz RSy (® $ (86)
bt Yo [(x __)2 Ba 2 3/2
x < -27’-
J
1~x 5. 7
__];_ 1 1 (x5 )=8! iy
u(x,r) = e [ [(51)2 z 213/2 [S »(x-8,)-8 b(x+81)] a5, +
N fzx-l (emBt® > (87)
b5 / [(x—i)2+52r2]3/2
x> L
J

where gl = X-X.

Nonsymmetric Bodles

For the flow about bodles which do not possess axisl symmetry, a
consideration of both sources and multipoles is required. The body

shape may be deslgnated by



38 NACA TN 396k

RGx,6) = Fi) + ) AR(1,0) (88)

n=1

wvhere R is the radius of a circular body having an ldentical axial
distribution of cross-sectional aresa. Sb(x) and vhere AR, 1s the incre-
mental change in body radlius assoclated with the nth order multipole
dlstribution.

In most practical cases the body will possess vertical and lateral
symmetry and will be nearly circular in cross section. In this case the
boundary condition (82) can be simplified to the following,

n
K

%Bxﬁ - hi Z ?1+1 A (x)cos ng =0 (89)
" io,2,4,... (FR)

In order to solve equation (89) for the strength functions Ap(x) it
1s convenient to express the body slope in the form (primes denote
differentiation with respect to x),

5. R ,0) (BR n+1
BR" (x,0) = BRI (x) + ) 2(5,0) (%) (90)
n=2,4,6,... - (BR)

It is assumed that the even function BAR' = B(R'-R') can be
represented by a Fourler cosine series and thus equation (90) becomes

n
BRY (x,0) = PR (x) + ) op(x)oos 59 (91)
n=2,4,8,... (BR)
vhere : o
I /2
an(x) = = f BAR' (BR)™""cos no a8 (%2)

(e
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If the relationships (91) and (92) are substituted into (89) end if
the coefficients of cos n8 are set equal to zero, there results in the

following solutions for the source and multipole strengths:

Ay = oxp R

/2
An = I%é f BAR' (BR)™ cos no a8

n o

where

MR'(x,8) = R*(x,0)-R'(x)

(93)

Once the source and multipole strengths have been determined, the
perturbation velocities may be evaluated by the use of equations (20)

to (31).

WING-BODY COMBINATIONS

It 1s assumed that the
wing-body combination pos-
sesses both lateral and ver-
tical symmetry and a coordi-
nate system is used which is
dimensionless with respect
to the junction chord and
with origin as shown in
sketch (o). The body radius
is denoted by R and B is
used, when the body is non-
clrcular, to denote the
radius of an equivalent cir-
cular body having ldentical
crogs-sectional area,

The boundary condition
to be satlsfied at the body
surface is

>

\

{O,Rq)

(1,Rq)

Sketch (o)
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v n
3R , (6)y 3R, 3R 2
3%; R 38 R

il
(o), (=), V(=) -, Y(z), O W

n w —
n=2,4,... N=2,4,...

where v(r) and v(e) are the redlel end azimuthal veloclities induced
w w
by the wing (which 1s assumed to extend through the body from wing tip
to wing tip as indicated in sketch (o)). The radial veloclty induced by
the axlal sources is denoted by v(r) , and v(r) and v(e) represent
n=0 n n -
the contributions of the axial multipoles.

The strengths of the axial sources are chosen s0 as to provide the
required body volume or, more speclfically, the body cross-sectional. areas,
and to eliminate the average of the wing-lnduced radial velocities at each
axial statlon. The average wing-induced radial velocity is defined as

e, -

The strengths of the axial multipoles are chosen so as to complete
the cancellsation of the wing-induced radial velocities and, for non-
symmetric bodies, to provide, in addition, the required distortion

AR(gj,G) = R(gj,e)-ﬁ(gj) from the circular shape having equal area,

/2

%f‘ V(r)de (95)

aqn

Determination of Axlal Source and
Multipole Strengths

Bodies having circular cross sections,- When the body shape is
eircular in cross section, the boundary condlition at the body surface is

n
3R }: .
B — - BV - Bv =0 (96)
2k, (Pl S (r),

where the radial velocities, v( ) , induced by the axisl sources and

multipoles can be expressed in terms of the strength functions An(g )
by the use of equations (32) and (3k4).
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Since we are comsidering only symmetrical, nonlifting wings, it is
possible to represent the wing-induced radial velocity by a Fourler cosine

. series involving only the even harmonics,
[3v(r)Wr = ao(gj)+a2(§3)cos 26+a4(§j)cos e + . .. (97)
where
5 /2
£ [ e o] s
2olts) =2 [ Y(r), MOM (98)
L /2
an(ty) = = f Bv(r)wcos ne ds (99)
°
thus,
/2
Bv(r)w = B[v(r)w] + 1—;:- Z cos néd BAv(r) cos ng d8 (100)
av N=2,4,64e04 © w

A consideration of equations (32), (96), and (100) leads to the
B following definitions for the axial source snd mulbtipole strengbhs:d

R
A, = 27nfR {s % - B[v(r)w:lav} (101)
/2
Ap 16BR
___(ﬁR)n = - T f BAV(r)Wcos no 4ag (102)

Bodies having noncircular cross sections.- If the body shape is
noncircular (but possesses both lateral and vertical symmetry) s 1t is
convenient to represent the body shape by

R(EJ,G) = f{(gj)m(gj,e) (103)

1The quentity Av(r) appearing in equations (100) and (102) can be
w

replaced by V(r) if so desired,
w
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where AR 1s an even function in 6, The axial source strengths are
glven by

¢

28% Jady, V(y)
o

82 { N - N [v(r)w}a‘,} (104)

where S, = P is the equlvalent body having equal cross-sectional. ares,
The strengths of the axial multipoles are to be chosen so as to complete
the cancellation of the wlng-induced radial velocities at the body surface
and to provide the requlired dlstortion AR from the equivalent clreulaxr
shape.

The boundary condition for determining the multipole strengths 1s

Bv
JAR (e)w 3R _ _ _
P 3. ® 2 PV(x), B[v(r)w:\av}

J
= KﬁAn d
1 R
E; E —=2 <cos noe - R_ sin nQ) =0 (105)

N=2,4,... (BR)

If the above equation is evaluated for a constant gj, at appropriate

azimuthal angles 6, a set of simultaneous equations ls obtailned involving
the unknown parameters An. If the body shape is nearly clrcular the
azimuthel derivative OR/06 may be neglected, and, if the body slope is
approximated according to equation (90), the multipole strengths are glven
gpproximetely by

Ay ¢ /2 /2
= = 10 f BAR(BR) T cos no ao - 1668 fﬂ Bv(yy cos né do
(gr): Ko Kn Tl
(106)
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Pressure Distributions

Once the source and multipole strength distribution functions have
been determined the pressure distributions may be calculated by first
obtaining the perturbation velocities and then using equation (10) or (11).
At the body surface the pressure coefficient is spproximately

n 2
o (R’
% = 2<“W+Z uﬂ) (déj
n=0

while at the wing surface the thin-airfoll approximation can be used,

s 4ed

The general solutions for the perturbation veloeity potential
(egs. (13) and (19)) behave properly at large distances from the wing
or body, that is,

u,v,w > 0

as the distance becomes infinitely large. The theory presented 1n this
report can be used to calculate pressure distributions in the neighboring
flow field as well as at the wing-body surfece.

ILLUSTRATIVE EXAMPIES AND COMPARTSON WITH EXFERIMENT

In order to illustrate and, to a certaln extent, Justify the practical
use of the present method for calculating pressure distributions for wing-
body combinations, & comparison of some theoretical and experimental
results will be presented. Because of the current Interest in area-rule
concepts, a comparison of theoretical and measured wing-body Jjuncture
pressures will be made for two sweptback wings of aspect ratios 3 and 6
in combinstion with basic Sears-Haasck bodies of revolubtion and in combl-
nation with the basic bodies indented according to Whitcomb's transonic
area rule (ref. 18). The experimental data used in the following com-
parison with theory were obtained in the Ames 1lk-foot transonic wind
tunnel.

e ™
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Theoretical Pressure Distributions at M, = 0.85 for
en Aspect-Ratio-6 Wing in Combination With a
Basic and Area-Rule Indented Body

The plan-form deteils of the aspect-ratio-6 wing in combination with
a baslc Sears-Haack body of fineness ratio 11 and in combination with the
basic body indented according to the transonic ares rule are presented in
figure 2. The procedure for calculating the pressure distributions at
M, = 0.85 will be described in detall for the indented body configuration.

Perturbation veloclty components induced by the wing alone.- For this
wing of largé aspect ratio the taper effect is small, and the formulas
glven previously for determining the flow over wmtapered wings may be used.
The flow over the wing at M, = 0.85 was obtained by the numerical evalua-
tion of equations (4k4) to (46) using the relationships of equations (47)
to (52). (A constant sweepback engle of A = 40° was used.)

The locations of lsobars at the wing surface are shown in figure 3.
These resulis were obtained by use of the thin-airfoil approximation
CP = =2u. The calculated perburbation velocities at the indented body
location are presented in figure 4 for several azimuthal locations (see
sketch (0)). The radial component of the perturbation velocity at the
body surface, -

V(p) =V cos 6+w sin 6 (107)

and the average radial velocitles, (eq. (95)), are presented in figure 5.

Determination of the axisl source and multipele strength
distributions.- For this configuration the body shape 1s clrecular and
the axial source and multipole strengths were obtalned by the use of
equations (101) and (102). The variation of source strength with axial
station is shown in figure 6. Equation (102) was evaluated numerically
(see fig., 7 for typical variastlions of &AV(r) cos n6 with 0) and the

results for multipoles of order n =2, L, and 6 are presented in
figure 8. _

Wng-body Juncture pressure distributions.- The streamwlse
perturbation velocitles induced by the wlng planar sources, axlal sources,
and axlal multipoles of order n =2, L4, and 6 for the aspect-ratio-6 wing
in combingstlon with the Iindented and basic hodles are shown in figures 9
and 10. The difference in the flow fields about the two configurations is
primexrily the result of differences in the strengbh dlistribution of axial
sources (see also fig. 6). The influence of the axial multipoles on the
flow field is comparatively small and decreases rapidly with an increase
in the order n of the multipole.
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A direct comparison of theoretlcal wing-body Juncture pressure
distributions for the basic and indented bodies is presented in figure 11.
Also included in figure 11 is the theoretical pressure distributlion at the
wing mid-semispan (which is sufficilently far removed from the model center
line and wing tip so as to be essentially free of end effects in subsonilc
flows.). For the indented body the juncture pressure distribution is almost
identical with the pressure distribution of the mid-semispan, Additional
calculations at other spanwise statlons indicate that the lsobar pattern
on the wing for the indented combination (excluding the local regions near
the wing tips) 1s essentially two-dimensional, that is, the lsobars tend
to follow the local sweep lines of the wing.

Comparison With Experiment

A comparison of some theoretical and measured pressure coefficients
at M, = 0.85 for the aspect-ratio-6 wing in combination with the indented
and basic bodies is presented in figures 12 and 13. The comparison of
theory and experiment i1s made for two body azimuthal locations,® 6 = 0°
and 8 = 900. The measured pressures at a row of wing orifices in the
immediate vicinity of the body (see fig. 2) are also included in fig-
ures 12 and 13 since 1t was felt that a comparison of theory and experi-
ment at the wing-body Junction would suffer somewhat from boundary-layer
effects in the corners of the wing-body juncture. In general, the theory
and experiment are Iin reasonably good agreement.

Similar comparisons of theory and experiment for the aspect-ratio-~3
wing and body combilnations shown in figure 14 are presented in figures 15
and 16. TFor thls case the perturbation velocities induced by the wing
alone were evaluasted by numerical means using the theory for wings of
tapered plan form. The location of isobars at the wing surface are shown
in figure 17. A convenient forrmlae for obtaining the variation of the
local sweepback angle with Junction-chord station gj is

X
ten A (t;) = tan A,(0) - —JF‘-E (108)

2At the wing-body Juncture the pressure orlfices glong the sides of
the bodies were located as close as posslble to the upper surface of the
wing. The designation 6 = 0° for the side row of orifices is used here
for convenience, although, at the wing-body juncture, the orifice loca-
tions differed slightly from 6 = O° because of the finite thickness of
the wing.
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CONCLUDING REMARKS

In this report a theoretical method has been developed for determining
the linearized subsonic flow gbout symmetrical, nonlifting wing-body com-
binations., Particular emphasis has been placed on developing practical
methods for use in obtaining numerical resulbts. As part of the present
analyslis a theory was developed for determining the flow about noncircular
bodies by the use of axially distributed sources and multipoles. The flow
over thin, nonlifting airfoils having symmetrical profiles was also studied
in considerable detail and it was shown that the concept of the obligue
source filement could be used for wings having tapered as well as untapered
plen forms. This is of considerable importance since numerical results can
be obtained for the tapered wing almost as easily as for the untapered
wing. -

Ames Aeronsutical Laboratory
Nationael Advisory Committee for Aeronautics
Moffett Field, Celif., Feb. 5, 1957
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Figure 11l.- A comparison of calculated pressure coefficlients at the
wing~-body junctures of the aspect-ratio-6 wing in combination
with the baslc and indented bodies; M, = 0.85.
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Haack body.
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Figure 15.~- A comparison of theoretical and measured pressure coefficlents
at M, = 0.85 for the aspect-ratio-3 wing in combination with an area

rule indented body.
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Haack body.
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